
LCM: Lossless Context Management

Clint Ehrlich
Voltropy PBC

clint@voltropy.com

Theodore Blackman
Voltropy PBC

ted@voltropy.com

February 14, 2026

Abstract

We introduce Lossless Context Manage-
ment (LCM), a deterministic architecture
for LLM memory that outperforms Claude
Code on long-context tasks. When bench-
marked using Opus 4.6, our LCM-augmented
coding agent, Volt, achieves higher scores
than Claude Code on the OOLONG long-
context eval, including at every context length
between 32K and 1M tokens.

LCM may be considered both a vindication
and extension of the recursive paradigm pi-
oneered by Recursive Language Models
(RLMs). Our results demonstrate that recur-
sive context manipulation can outperform not
just conventional LLMs, but frontier coding
agents with native file-system access.

LCM departs from RLM by decomposing sym-
bolic recursion into two deterministic, engine-
managed mechanisms: recursive context
compression, in which a hierarchical sum-
mary DAG automatically compacts older mes-
sages while retaining lossless pointers to ev-
ery original; and recursive task partition-
ing, in which engine-managed parallel primi-
tives like LLM-Map replace model-written loops.
This trade-off, analogous to the move from
GOTO to structured control flow in program-
ming language design, sacrifices maximal flex-
ibility for termination guarantees, zero-cost
continuity on short tasks, and lossless retriev-
ability of all prior state.

1 Introduction

The effective context window of Large Language
Models (LLMs) remains the primary bottleneck for
complex, long-horizon agentic tasks. Even models
with 1M+ token windows are insufficient for multi-
day agentic sessions, where the volume of tool calls,
file contents, and intermediate reasoning can exceed
the context limit of any production LLM. This prob-
lem is compounded by “context rot” [1], in which
model performance degrades well before the nominal
limit is reached.

Zhang et al.’s Recursive Language Models (RLM)
[2] opened a significant new paradigm by proposing
that the model actively manage its own context,
treating the prompt as part of an external envi-
ronment rather than a fixed input. In the RLM
paradigm, the model is given a REPL and tasked
with writing scripts to manage, chunk, and recur-
sively process its own context. The core insight,
that context management can be an active process
rather than a passive one, is foundational. Our
work builds on this insight and seeks to broaden the
design space within it. Whereas RLM explores one
end of this space, granting the model full autonomy
over its memory strategy via symbolic recursion,
we explore the other end: what happens when the
engine manages memory on the model’s behalf, us-
ing deterministic primitives informed by the same
active-context-management philosophy?

Our approach is motivated by the reality that full
symbolic recursion presents significant challenges for
production environments. When an LLM is tasked
with writing the loops that manage its memory,
the system inherits the stochasticity of the model:
an efficient chunking script in one rollout may be-
come a suboptimal one in the next. Furthermore,
wrapping every interaction in a recursive scaffold
introduces a “short-context penalty,” adding latency
and cost to the vast majority of user queries which
fit comfortably within standard windows.

The tension between expressivity and reliability
echoes an old lesson from programming language
design. Early programs used unrestricted GOTO to
implement any control flow the programmer desired.
This was maximally flexible, but difficult to reason
about and prone to subtle bugs. Dijkstra’s landmark
critique [3] catalyzed the structured programming
movement, which replaced GOTO with constrained
primitives (for, while, if/else) that were less ex-
pressive in theory but far more reliable in practice.
Similarly, RLM gives the model GOTO-like power
to use arbitrary control flow and context manage-
ment strategies, while LCM offers the equivalent of
structured control flow: a small set of well-defined
operators that cover the common cases determinis-
tically.

1

ar
X

iv
:s

ub
m

it/
72

69
16

6
 [

cs
.A

I]
 1

4
Fe

b
20

26

Figure 1: Volt with LCM vs. Claude Code on the OOLONG-synth long context benchmark

Concretely, LCM shifts the burden of memory archi-
tecture from the model back to the engine. Rather
than asking the model to invent a memory strat-
egy, it provides a deterministic, database-backed
infrastructure. It maintains a high-fanout DAG of
summaries in a persistent, transactional store, al-
lowing the system to compress context aggressively
while retaining “lossless” pointers to the original
data.

While RLMs have previously been benchmarked
against raw base models, we evaluate LCM
against Claude Code [4], a stronger baseline for
production-oriented comparisons. Claude Code rep-
resents the current state-of-the-art in production
agents, possessing native file-system access and tool
capabilities. Our evaluation on the OOLONG bench-
mark [5] shows that LCM significantly outperforms
Claude Code on long-context aggregation and rea-
soning. These results directly rebut the common
claim that recursive context management is "just
Claude Code." In reality, LCM outperforms Claude
Code, because LCM’s recursive architecture is fun-
damentally more powerful.

2 Lossless Context Manage-
ment Architecture

LCM fundamentally differs from conventional com-
paction or sliding-window approaches by ensuring
lossless retrievability, based on a dual-state mem-
ory architecture: the Immutable Store and the

Active Context. By “lossless,” we mean that for
every message m produced during a session, the un-
summarized original is retained verbatim in the im-
mutable store and remains reachable via lcm_grep
or lcm_expand. The system is designed to enable
an agent to navigate to and recover any prior state,
though we cannot deterministically guarantee that
the agent will always do so.

The Immutable Store is the source of truth: ev-
ery user message, assistant response, and tool result
produced during a session is persisted verbatim and
never modified. The Active Context is the win-
dow actually sent to the LLM on each turn. It
is assembled from a mix of recent raw messages
and precomputed summary nodes, which are com-
pressed representations derived from older messages
via LLM summarization. Summary nodes function
as materialized views over the immutable history:
they are a derived cache; the immutable history
remains the sole source of truth. Because the un-
derlying messages are always retained, any sum-
mary can be replaced by the original content via
the lcm_expand tool (Appendix Appendix C). To
prevent context flooding, lcm_expand is restricted
to sub-tasks; the main user interaction loop can only
observe summaries, not expand them inline.

2.1 The Hierarchical DAG

The core data structure of LCM is a Directed Acyclic
Graph (DAG) maintained in a persistent store that
supports transactional writes, foreign-key integrity,

2

1: Input: New item h, Store D, Active Context C
2: Persist h into D with metadata (role, tokens, timestamp).
3: Append h to C (as a pointer).
4: if Tok(C) > τsoft then
5: Trigger asynchronous compaction (does not block user).
6: end if
7: while Tok(C) > τhard do
8: // Hard limit reached: block to compact
9: Identify oldest block in C.

10: S ← EscalatedSummary(block).
11: Replace block in C with pointer to S.
12: end while
13: return Updated C to Model.

Figure 2: LCM Context Control Loop

and indexed search. The specific storage backend
is an implementation detail; our reference imple-
mentation uses an embedded PostgreSQL instance,
but the architecture requires only these properties.
As the active context window fills, older messages
are compacted into Summary Nodes while the
originals are preserved verbatim.

This DAG-based architecture overcomes the short-
comings of simpler retrieval strategies. Persisting
the full conversation to a flat file and relying on
exact-match search (e.g., grep) preserves ground
truth but requires the agent to already know the
substring it is looking for, making it ineffective for
open-ended queries like “what architectural deci-
sions have been made so far?” Embedding-based
semantic search (RAG) handles open-ended queries
but returns decontextualized fragments, stripped
of the conversational structure—who said what, in
response to what, and what was decided afterward—
that gives them meaning. The hierarchical DAG
addresses both: summary nodes provide a multi-
resolution map of the session’s history, while lossless
pointers beneath them allow targeted drill-down
into the full original context.

An embedding index over summary nodes or leaf
messages could be added as a complementary re-
trieval pathway; we have not implemented this, as
regex search over ground truth combined with hier-
archical summary traversal has proven sufficient for
our evaluation workloads.

To ensure reliability, LCM employs a determinis-
tic, engine-driven control loop (Figure 2) with soft
(τsoft) and hard (τhard) token thresholds to decide
when to summarize.

2.2 Large File Handling

In agentic coding sessions, tool results frequently
include file contents that individually approach or ex-

ceed the context limit; a single large log file, dataset,
or codebase dump can consume the entire window in
one turn. LCM addresses this by imposing a token
threshold below which files are included in context
normally, and above which the engine stores files
externally and inserts a compact reference into the
active context: an opaque ID, the file path, and a
precomputed Exploration Summary.

The Exploration Summary is generated by a type-
aware dispatcher that selects an analysis strategy
based on file type. Structured formats (JSON, CSV,
SQL databases) receive schema and shape extrac-
tion; code files receive structural analysis (e.g., func-
tion signatures, class hierarchies); unstructured text
receives an LLM-generated summary. The result is
a concise representation that gives the model enough
information to reason about the file’s contents with-
out loading them.

Unlike context messages, which are stored verbatim
in the immutable store, LCM stores only a refer-
ence to the file’s path on disk, keeping file content
exclusively on the filesystem. This design reflects
a practical reality of production agentic sessions:
files under manipulation (log files, datasets, build
artifacts) can reach tens of gigabytes, making dupli-
cation prohibitive. Because files are heterogeneous
with numerous external interactions, they are best
manipulated through standard filesystem operations
(reading, grepping, editing), which the agent is al-
ready fluent in via its coding tools. LCM’s role
is therefore limited to ensuring the model retains
awareness of files it has encountered, leaving file ma-
nipulation to the filesystem tools the agent already
possesses.

File IDs are propagated through the summary DAG:
when messages referencing a file are compacted, the
resulting summary node retains the file IDs. This en-
sures that even after multiple rounds of compaction,
the model retains awareness of, and can re-read, any
file encountered earlier in the session.

3

1: Input: Items X to summarize, Target Tokens T
2: for ℓ ∈ {1, 2, 3} do
3: if ℓ = 1 (Normal) then
4: S ← LLM-Summarize(X,mode="preserve_details", T)
5: else if ℓ = 2 (Aggressive) then
6: S ← LLM-Summarize(X,mode="bullet_points", T/2)
7: else
8: S ← DeterministicTruncate(X, 512) // No LLM involved
9: end if

10: if Tokens(S) < Tokens(X) then
11: return S
12: end if
13: end for
14: return S // Guaranteed convergence via Level 3

Figure 3: Three-Level Summarization Escalation

2.3 Guaranteed Convergence via
Three-Level Escalation

A known challenge in autonomous agents is “com-
paction failure,” where a model asked to summa-
rize text produces an output longer than the input.
Architectures that rely on model-generated control
flow, including RLM-style approaches, must account
for this scenario.

LCM enforces convergence via a strict Three-Level
Escalation protocol (Figure 3). If a summarization
level fails to reduce token count, the system auto-
matically escalates to a more aggressive strategy,
culminating in a deterministic fallback that requires
no LLM inference.

2.4 Zero-Cost Continuity and Deter-
ministic Retrievability

Two architectural invariants distinguish LCM from
recursive approaches.

Zero-Cost Continuity. A practical considera-
tion for recursive architectures like RLM is the
“always-on” nature of the recursive environment. Ini-
tializing a REPL, loading the prompt as a variable,
and interpreting code introduces latency and cost
even for short interactions.

LCM avoids this overhead entirely in the common
case. Below the soft compaction threshold τsoft, no
summarization or store retrieval occurs; the store
acts as a passive logger and the user experiences
the raw latency of the base model. When the soft
threshold is exceeded, LCM performs compaction
asynchronously and atomically swaps the resulting
summary into the context between LLM turns. The

overhead falls into three regimes:

Overhead(C) =


none |C| < τsoft

async τsoft ≤ |C| < τhard

blocking |C| ≥ τhard
(1)

Because the atomic swap occurs between turns, the
user experiences no additional latency unless an
unusually rapid and token-intensive succession of
prompts and tool calls exceeds the hard threshold
during the ∼25-second compaction window. In prac-
tice, this ensures zero user-facing overhead for the
majority of software engineering workflows using
modern LLMs.1

Deterministic Retrievability. When LCM com-
pacts older messages into summary nodes, the en-
gine deterministically inserts the IDs of the sum-
marized content into the active context alongside
each summary. The engine enforces this program-
matically as a post-processing step, independent of
model output. As a result, any message from ear-
lier in the session can always be retrieved losslessly
via the lcm_expand tool, regardless of how many
rounds of compaction have occurred. The model
never needs to “know” that compaction happened;
it simply sees summary text annotated with stable
identifiers it can expand on demand.

1On the first turn after a compaction, the LLM provider
must regenerate the KV cache for the newly inserted summary
and for any messages that entered the context after the
compaction began, since neither was present in the previous
turn’s cache. However, the summary is small and replaces
a larger block of older messages, and the post-compaction
messages would have required prefill regardless, so the added
latency is generally imperceptible.

4

1: Input: Dataset {xi}Ni=1, Prompt P , Schema Σ, Concurrency N
2: Initialize Worker Pool (Size N = 16)
3: Parallel For xi in Dataset:
4: yi ← LLM(P (xi))
5: if yi validates against Σ then
6: Mark OK, Store yi
7: else
8: Retry up to K times
9: If fail, Mark Error

10: end if
11: End Parallel
12: Register outputs in LCM Store
13: return Summary Handle to Agent

Figure 4: LLM-Map Execution (Engine Side)

2.5 Integration: Volt

LCM is implemented within Volt, a production-
level terminal-based coding agent released as an
open-source research preview. Volt is forked from
OpenCode [6], an open-source, permissively licensed,
provider-agnostic coding agent built on a TypeScript
client/server architecture with a terminal UI. Open-
Code was chosen as the basis for Volt because it is
fully featured and supports multiple LLM providers.
In Volt, the LCM engine handles user sessions, re-
placing OpenCode’s default session management.
The context control loop (Algorithm 2) and the
three-level escalation protocol (Algorithm 3) run
within Volt’s message-processing pipeline, requiring
no modifications to the model’s tool definitions or
prompt format. Volt is released as an open-source
research preview to enable reproducibility of the
benchmark results presented in Section 4 and to
support further research on deterministic context
management architectures.

3 From Symbolic to Operator-
Level Recursion

The RLM paper highlights “symbolic recursion,”
the ability of the model to write loops (e.g., for
chunk in context: ...), as a powerful capabil-
ity. While this maximizes flexibility, it also requires
the model to correctly implement error handling,
concurrency, and state management in Python for
every execution, which introduces variance in pro-
duction settings.

3.1 Operator-Level Recursion

As an alternative to the model-generated loops of
RLM, LCM introduces Operator-Level Recur-

sion via two tools: LLM-Map and Agentic-Map.
Both apply a prompt to every item in a list, in
parallel. LLM-Map processes each item as a single,
stateless LLM call, suitable for classification, ex-
traction, scoring, and other side-effect-free tasks.
Agentic-Map spawns a full sub-agent session for
each item, with access to tools such as file I/O and
code execution, suitable when per-item processing
requires multi-step reasoning or interaction with the
environment.

In both cases, the model invokes a single tool call,
and the engine handles all iteration, concurrency,
and retries deterministically (Figure 4). This moves
the “control flow” logic from the stochastic layer to
the deterministic layer.

This approach allows a single tool call to process
an arbitrarily large number of inputs without the
model ever needing to manage a loop or context
window.

Several properties of this design merit elaboration.

Database-Backed Execution. The engine uses
its persistent store to track the status of each item
in the batch: pending, running, completed, or
failed. Concurrent workers claim items via pes-
simistic locking, ensuring exactly-once execution
semantics (modulo retries on error). Failed items
are retried up to a configurable maximum before
being marked as permanent failures. An ad-hoc
script written by the model would be unlikely to
implement these guarantees.

Context Isolation via File-Based I/O. Both
the input list and the output list for llm_map and
agentic_map are files on disk (in JSONL format),
external to the active context. This means the model
can process datasets of arbitrary size without the
input or output polluting or overflowing its context

5

window. The model assembles the input file using
its standard coding tools (writing and executing
scripts to fetch, filter, and format data), so users and
parent tasks can express the desire to process large
datasets in natural language. The agent handles
the mechanical work of constructing the JSONL
input without the user needing to understand the
file format.

Schema-Validated Output. Each tool call in-
cludes a JSON Schema specifying the expected
type of each output element. After every per-
item LLM call (or sub-agent session, in the case
of agentic_map), the engine validates the response
against this schema. If validation fails, the engine
injects a message into that item’s conversation de-
scribing the type error and requesting a corrected
response, repeating up to the retry limit. This pro-
vides a type-level guardrail: downstream scripts
that aggregate the results can rely on a consistent
structure rather than defensively parsing heteroge-
neous outputs. We note that while we have imple-
mented the “map” half of map-reduce as an LLM-
powered operator, we have not built corresponding
llm_reduce or agentic_reduce tools. In our ex-
perience, the reduce step is generally better served
by deterministic code (the model writes a script
that aggregates the typed outputs) rather than by
another LLM-powered operation. Building reduce
operators would be a straightforward extension of
the system.

Recursive Composition. Agentic_map sub-
agents are full agent sessions with access to tools,
including agentic_map itself. This means a map op-
eration can recursively spawn nested map operations
if the per-item work requires its own parallelism. For
example, a top-level map over repositories where
each repository requires a nested map over its files.
In our usage, this recursive composition works seam-
lessly and has not exhibited infinite-recursion be-
havior, likely because each level of nesting operates
on a strictly smaller unit of work.

3.2 Guarding Against Infinite Dele-
gation

Operator-level recursion addresses the data-
parallelism case, but agentic systems also require
task delegation: the ability for an agent to spawn
sub-agents that handle portions of a larger task.
Sub-agents are essential for context isolation: inter-
mediate tool calls remain private to the sub-agent,
preserving the parent’s context window for orches-
tration. However, unrestricted delegation introduces
its own recursion hazard: an agent may delegate its

entire task to a sub-agent with an identical prompt,
which in turn delegates again, producing an infinite
chain of agents that never perform any work.

LCM addresses this with a scope-reduction in-
variant. When a sub-agent (as opposed to the root
agent) spawns a further sub-agent, it must declare
two parameters: the delegated scope (the specific
slice of work being handed off) and the retained
work (the work the caller will still perform itself).
If the caller cannot articulate what it is retaining
(that is, if it would delegate its entire responsibility),
the engine rejects the call and instructs the agent
to perform the work directly. This forces each level
of delegation to represent a strict reduction in re-
sponsibility, creating a well-founded recursion that
must eventually bottom out in direct execution.

This guard is deliberately not applied in two cases:
the root agent (which has no parent to recurse with)
and read-only exploration agents (which lack the
ability to spawn further sub-agents and thus cannot
recurse). It is also not applied to parallel decompo-
sition, where an agent splits work into independent
sibling tasks, since sibling decomposition does not
create nested delegation chains.

Notably, unlike RLM, which imposes a fixed recur-
sion depth limit to prevent runaway execution, LCM
requires no such limit. The scope-reduction invari-
ant provides a structural guarantee of termination:
because each level of nested delegation must strictly
reduce the caller’s responsibility, the recursion is
well-founded and must bottom out regardless of
depth. In our evaluation, we observed no instances
of excessive or runaway delegation, confirming that
the invariant is sufficient in practice without an
arbitrary depth bound.

4 Evaluation

We evaluate LCM on the OOLONG benchmark
[5], specifically the trec_coarse split, which tests
long-context reasoning and aggregation capabilities.

4.1 Baselines

Previous work has established that recursive agen-
tic scaffolds are superior to raw base models (e.g.,
GPT-5, Qwen) on long-context tasks[2]. We evalu-
ate a newer and more advanced base model, Opus
4.6[7]. To further contextualize performance, we
additionally compare against Claude Code v2.1.4,
a sophisticated CLI agent with native file system
access and tool use, providing a stronger baseline
representative of production-grade systems.

6

RLM Approach (Full Autonomy)
The model writes code to manage its own context.
for chunk in large_file:

response = llm.query(chunk)

LCM Approach (Deterministic Operator)
The model delegates control flow to the engine.
tool_call("llm_map",

input_path="large_file.jsonl",
prompt="Extract␣entities ...",
output_schema ={...} ,
concurrency =16

)

Figure 5: Comparison of RLM vs LCM Approaches

In our testing, both Volt and Claude Code used
Opus 4.6 as their primary reasoning model.[7] Addi-
tionally, both were given access to Claude Haiku 4.5
as a lightweight auxiliary model for high-throughput
subtasks such as per-item classification. This en-
sured that any performance differences reflect archi-
tectural choices rather than asymmetric access to
model resources[8].

4.2 Results

We evaluated both systems on OOLONG tasks with
contexts ranging from 8K to 1M tokens. Figure 6 re-
ports absolute scores; Figure 1 reports improvement
over raw Opus 4.6.

On average, Volt achieved an absolute score of 74.8
compared to Claude Code’s 70.3, representing a 4.5-
point advantage. The improvement gap over raw
Opus 4.6 was similarly consistent: Volt averaged
+29.2 points versus Claude Code’s +24.7.

At shorter context lengths (8K and 16K), where
the full input fits comfortably within the model’s
native window, the two systems performed compa-
rably—Claude Code held a slight edge at 8K (+13.1
vs. +11.2) and 16K (+26.3 vs. +25.0). Beginning
at 32K tokens, Volt outperformed Claude Code at
every context length tested. The performance gap
widened beyond 131K tokens: at 256K, Volt led by
10.0 points (+18.5 vs. +8.5); at 512K by 12.6 points
(+42.4 vs. +29.8); and at 1M by 4.3 points (+51.3
vs. +47.0).

Raw Opus 4.6 without any agentic scaffold showed
steep degradation beyond 65K tokens, falling below
20 at the largest context lengths.

4.3 Analysis

The results suggest two distinct performance
regimes. Below 32K tokens, LCM’s determinis-

tic machinery provides no advantage over Claude
Code’s native file-system access: both systems can
hold the full input in context, and the task reduces
to straightforward reasoning. LCM’s Zero-Cost Con-
tinuity property (Section 2.4) ensures it incurs no
penalty in this regime, but neither does it gain one.

Above 32K tokens, the systems diverge because
they employ fundamentally different strategies for
handling inputs that exceed comfortable context
sizes (Figure 5). Claude Code relies on the model
to devise and execute its own chunking strat-
egy—typically reading files linearly or writing Bash
scripts to split and process them. This approach
is flexible but introduces two sources of error: the
model must correctly implement the chunking logic
on each rollout, and it must maintain coherent state
across chunks within its own context window.

Volt, by contrast, delegates the iteration and ag-
gregation to LLM-Map, which processes items in
parallel outside the model’s context entirely. The
model never sees the raw dataset; it specifies a
per-item prompt and output schema, and the en-
gine returns aggregated results. This eliminates
context saturation as a failure mode for aggrega-
tion tasks and explains why Volt’s accuracy remains
stable—and even increases—at the largest context
lengths, where the additional data provides more
signal without imposing additional cognitive load
on the model.

5 Limitations and Future Work

Data Contamination in OOLONG. Following
Zhang et al., we adopt OOLONG as our primary
evaluation suite. However, inspection of Opus 4.6
reasoning traces revealed that the model occasion-
ally recognizes the underlying data and produces
correct answers from parametric memory without
performing the required aggregation. This is un-
surprising given the benchmark’s public availability,

7

Figure 6: Performance on the Oolong Benchmark. LCM outperforms Claude Code, particularly in the
ultra-long context regime, by leveraging deterministic map-reduce tools rather than linear context loading.

but it complicates interpretation. We address this
by excluding any task where reasoning traces show
evidence of memorization, reporting only decontam-
inated results in Section 4.

For transparency, we include the full pre-
decontamination results in Appendix Appendix A.
The overall finding is unchanged (Volt outperforms
Claude Code across context lengths), though the
gap narrows. An interesting observation is that
LCM’s architecture appears to partially insulate
against contamination effects: because LLM-Map dis-
patches items as independent classification calls,
the model is structurally nudged toward per-item
reasoning even when it shows signs of recognizing
the dataset. Systems that process items within a
single context window offer more opportunity for
parametric shortcuts to influence the output.

A caveat applies to the raw model baselines. Our de-
contamination procedure relies on structured reason-
ing traces to detect memorization, which were not
available for the harness-free model outputs. Since
both Claude Code and Volt are compared against
the same raw baseline, any undetected contamina-
tion in the baseline affects both systems’ relative
scores equally, and we do not believe it alters the
comparative conclusions.

Toward Contamination-Resistant Evaluation.
More broadly, our experience highlights the fragility
of static benchmarks for evaluating long-context
systems. Any fixed dataset will eventually enter the

training distribution of some frontier model, and
the problem will only worsen as providers scale data
collection. We believe the more durable solution
is procedurally generated evaluation: test harnesses
that synthesize novel context windows on-the-fly
and pair them with tasks drawn from parameterized
templates (classification, aggregation, retrieval) over
freshly sampled distributions. This approach offers a
secondary benefit beyond contamination resistance:
it can generate contexts of arbitrary length, which
static benchmarks cannot. The current OOLONG
suite caps at 1M tokens, a ceiling that the raw
Opus 4.6 context window already exceeds. Keeping
evaluation meaningful as context lengths grow will
require benchmarks that scale with them.

6 Conclusion

RLM and LCM represent complementary points
along a design spectrum in AI systems engineering.
RLM embodies the “Model-Centric” view: maxi-
mize the model’s autonomy by allowing it to act
as a general-purpose computer. LCM embodies the
“Architecture-Centric” view: provide the model with
structured primitives that reduce the decisions it
must make.

By being “opinionated,” constraining control flow
to a narrow, well-behaved subset of patterns via
primitives like LLM-Map and Agentic-Map, LCM
reduces the search space for the model. The sys-
tem remains transparent, adding zero overhead for

8

short tasks, while scaling deterministically to mas-
sive contexts with guaranteed lossless retrievability
of prior state. Our results on OOLONG suggest that
the architecture-centric approach can yield reliabil-
ity and cost advantages for production aggregation
workloads.

We acknowledge that the case for architectural
control flow may diminish as LLM capabilities in-
crease. Models that reliably generate correct, ef-
ficient memory-management code on every roll-
out would reduce the variance penalty of sym-
bolic recursion. However, certain advantages of the
architecture-centric approach may persist regardless
of model capability, most notably Zero-Cost Conti-
nuity, which is a structural property of the system
rather than a bet on model limitations. Moreover,
even if the two approaches converge in ultimate ca-
pability, LCM’s deterministic primitives allow more
rapid production deployment of infinite-context ar-
chitectures: teams can ship reliable context manage-
ment today without waiting for models to master
the meta-skill of managing their own memory.

The two approaches need not be mutually exclusive.
Just as GOTO remains available in modern languages
for the rare cases where structured control flow is
inadequate, a future system could default to LCM’s
structured operators for most usage while retaining
full RLM-style symbolic recursion for exceptional
tasks where deterministic primitives prove insuffi-
cient.

References

[1] Hong, K., Troynikov, A., & Huber, J. (2025).
Context Rot: How context degradation affects
LLM performance.

[2] Zhang, A. L., Kraska, T., & Khattab, O. (2026).
Recursive Language Models. arXiv preprint
arXiv:2512.24601.

[3] Dijkstra, E. W. (1968). Go to statement con-
sidered harmful. Communications of the ACM,
11(3), 147–148.

[4] Anthropic. (2026). Claude Code Docs. https:
//code.claude.com/docs/en/overview.

[5] Bertsch, A., et al. (2025). Oolong: Evaluating
long context reasoning and aggregation capabili-
ties.

[6] Anomaly. (2025). OpenCode: The open-
source AI coding agent. https://github.com/
anomalyco/opencode.

[7] Anthropic. (2026). Claude Opus 4.6. https://
www.anthropic.com/claude/opus.

[8] Anthropic. (2025). Claude Haiku 4.5. https:
//www.anthropic.com/claude/haiku.

Appendix A Raw Scores

We include the full pre-decontamination results in
Figure 7. These results are not accurate, because
they include reasoning traces where Opus 4.6 was
able to recognize the dataset it was being tested on.

For example, on task 17000239 in the 131k context,
Opus 4.6 in the Claude Code harness wrote: "I now
have the exact answer from the ground truth TREC
QC dataset. All 3,182 questions matched perfectly
against the labeled dataset, and the exact count of
’entity’ (ENTY) questions is 521."

We decontaminated our data by not scoring any
tasks where a model displayed this type of paramet-
ric knowledge of the ground-truth tokens.

Appendix B LCM Data Model

To support the lossless guarantees described in Sec-
tion 2, the storage layer separates the immutable
message history (Storage) from the derived summary
DAG (Materialized Views). The key requirements
are transactional writes (to ensure atomicity of com-
paction operations), referential integrity (to prevent
orphaned summaries), and indexed full-text search
(to support the lcm_grep tool). Our reference imple-
mentation uses an embedded PostgreSQL instance,
but any storage backend satisfying these properties
would suffice.

Messages Table. Full-fidelity storage of user, as-
sistant, and tool content. Includes indexed full-text
search columns, enabling the lcm_grep tool.

Summaries Table.

• Leaf Summaries: Direct summary of a span of
messages.

• Condensed Summaries: A higher-order sum-
mary of multiple existing summaries, enabling
the DAG structure.

• Provenance: Maintains referential integrity to
parent messages or summaries, preventing “or-
phaned” context.

9

https://code.claude.com/docs/en/overview
https://code.claude.com/docs/en/overview
https://github.com/anomalyco/opencode
https://github.com/anomalyco/opencode
https://www.anthropic.com/claude/opus
https://www.anthropic.com/claude/opus
https://www.anthropic.com/claude/haiku
https://www.anthropic.com/claude/haiku

Figure 7: Raw Oolong Scores. LCM outperforms Claude Code based on raw Oolong scores, but the gap
is less dramatic due to heavy reliance on parametric shortcuts at longer context lengths.

Large Files. Path-based storage for files exceed-
ing token thresholds (default >25k tokens). These
files are never loaded into the active context directly;
they are represented by an ID and a computed
“Exploration Summary” (generated by type-specific
explorers for SQL, JSON, Code, etc.).

Appendix C Tool Interfaces

LCM exposes its capabilities to the model through
three categories of tools: memory-access tools for
querying the immutable store, operator tools for
parallel data processing, and delegation tools for
managing sub-agents.

Appendix C.1 Memory-Access Tools

These tools provide read-only access to the im-
mutable store, ensuring the model cannot acciden-
tally corrupt its own history.

lcm_grep(pattern, summary_id?). Performs
regex search across the full immutable message
history. Returns matching messages grouped by
the summary node that currently covers them,
allowing the model to understand which region of
the conversation each match belongs to. Results are
paginated to prevent context flooding. An optional
summary_id parameter restricts the search to
messages within the scope of a particular summary.
This tool is available to both the main agent and
sub-agents.

lcm_describe(id). Returns metadata for any
LCM identifier (file or summary). For file IDs, this
includes the original path, MIME type, token count,
and the exploration summary generated when the
file was first encountered (Section 2.2). For sum-
mary IDs, this includes the summary kind (leaf
or condensed), token count, parent pointers, and
the full summary text. This tool allows the model
to inspect what a compacted reference represents
without expanding it.

lcm_expand(summary_id). Expands a summary
node into its constituent messages, reversing the
compaction that created it. Because expansion can
recover arbitrarily large volumes of earlier conversa-
tion, this tool is restricted to sub-agents spawned
via the Task tool; the main agent cannot call it
directly. This restriction prevents uncontrolled con-
text growth in the primary interaction loop. When
the main agent needs to inspect compacted history,
it delegates the expansion to a sub-agent, which
processes the expanded content in its own context
window and returns only the relevant findings.

Appendix C.2 Operator Tools

These tools implement Operator-Level Recursion
(Section 3.1), allowing the model to process un-
bounded datasets via a single tool call while the
engine handles iteration, concurrency, and retries.

llm_map(input_path, prompt, output_schema,
...). Processes each item in a JSONL input

10

file by dispatching it as an independent LLM API
call. The engine manages a worker pool (default
concurrency 16), validates each response against
the caller-supplied JSON Schema, and retries
failed items with feedback from the validation
error. No tools or side effects are available to the
per-item calls; each is a pure function from input
to structured output. Results are written to a
JSONL output file and registered in the immutable
store. This tool is appropriate for high-throughput,
side-effect-free tasks such as classification, entity
extraction, or scoring.

agentic_map(input_path, prompt,
output_schema, read_only, ...). Similar
to llm_map, but spawns a full sub-agent session
for each item rather than a single LLM call. Each
sub-agent has access to tools (file reads, web
fetches, code execution) and can perform multi-step
reasoning. A read_only flag controls whether
sub-agents may modify the filesystem. Output
validation and retry logic follow the same pattern
as llm_map. This tool is appropriate when per-item
processing requires tool use or multi-turn reasoning
that cannot be captured in a single prompt.

Appendix C.3 Delegation Tools

These tools manage the spawning and coordination
of sub-agents, enabling hierarchical task decomposi-
tion while preserving context isolation.

Task(prompt, subagent_type,
delegated_scope, kept_work, ...). Spawns
a single sub-agent to execute a task autonomously.
The sub-agent receives its own context window and
session; all intermediate tool calls remain private to
the sub-agent, and only its final answer is returned
to the parent. This preserves the parent’s context
for orchestration rather than consuming it with
intermediate results.

The Task tool inherits from OpenCode’s sub-agent
mechanism but introduces a key modification for
LCM: an infinite-recursion guard. When a
sub-agent (as opposed to the root agent) invokes
Task, it must provide two additional parameters:
delegated_scope, describing the specific slice of
work being handed off, and kept_work, describ-
ing the work the caller retains for itself. If the
caller cannot articulate what it is keeping (that is,
if it would delegate its entire responsibility), the
call is rejected with the instruction to perform the
work directly. This forces each level of delegation
to represent a strict reduction in scope, creating a
natural bottoming-out condition analogous to a well-
founded recursion. Read-only exploration agents are

exempted from this check, as they lack the ability to
spawn further sub-agents and thus cannot recurse.

Tasks(tasks[]). Accepts an array of two or more
independent task descriptions and executes them as
parallel sub-agents. Tasks dispatches all sub-agents
concurrently and aggregates their results, preserv-
ing the parent’s context from intermediate clutter.
The recursion guard is not applied to parallel tasks,
as they represent sibling decomposition (splitting
work into independent units) rather than nested del-
egation. This tool was added in Volt to encourage
parallel work decomposition as a first-class pattern,
complementing the sequential delegation of Task.

11

	Introduction
	Lossless Context Management Architecture
	The Hierarchical DAG
	Large File Handling
	Guaranteed Convergence via Three-Level Escalation
	Zero-Cost Continuity and Deterministic Retrievability
	Integration: Volt

	From Symbolic to Operator-Level Recursion
	Operator-Level Recursion
	Guarding Against Infinite Delegation

	Evaluation
	Baselines
	Results
	Analysis

	Limitations and Future Work
	Conclusion
	Raw Scores
	LCM Data Model
	Tool Interfaces
	Memory-Access Tools
	Operator Tools
	Delegation Tools

